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the bcc (1111 than the fcc (110 directions due to the additional strong

multiple int rlayer forces arising from its geometric stucture. A
quantitative analysis based on surface lattice dynamics of the recorded
electron energy loss spectra of Cu and Ni suggests that the surface interlayer
force constant attains the same value as in bulk, and that the two outermost
layers give the dominant contribujon to the dipole activity. This resonance
is found to exist throughout the' direction ancLmakes an avoided crossing
with a resonance derived from a band gap at the 5-'point. This novel dispersion
behavior should be possible to observe by electron or atom scattering at larger
parrallel, wavevector transfers.
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Abstract:

It is shown by surface lattice dynamics that a new class of surface

vibrational resonances arises in those frequency regions where there is a

strong depletion in the bulk phonon density of states. The presence of

these pseudo band gaps is due to the higher Fourier components in the

phonon dispersion relations introduced by the particular coordination of

atoms in layers parallel to the surface. This phenomenon is illustrated

for the fcc(110) surfaces of Cu and Ni and the bcc(111) surface of Fe. The

pseudo band gap is found to be more pronounced for the longitudinal phonons

propagating in the bcc [111) than the fcc [110) directions due to the

additional strong multiple interlayer forces arising from its geometric

structure. A quantitative analysis based on surface lattice dynamics of

the recorded electron energy loss spectra of Cu and Ni suggests that the

surface interlayer force constant attains the same value as in bulk, and

that the two outermost layers give the dominant contribution to the dipole

activity. This resonance is found to exist throughout the ?R direction and

makes an avoided crossing with a resonance derived from a band gap at the

R-point. This novel dispersion behavior should be possible to observe by

electron or atom scattering at larger parallel wavevector transfers.
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1. Introduction

The vibrational properties of clean metal surfaces have recently

attracted a lot of attention both from an experimental and a theoretical

point of view. These studies have been made possible by new surface

sensitive vibrational spectroscopies such as inelastic He scattering and

electron energy loss spectroscopy (EELS). These techniques probe

vibrations with such high frequencies that the surface lattice dynamics

cannot be described fully within the continuum elasticity theory. In this

frequency regime the atoms vibrate with large relative displacements such

that the surface geometric structure and the surface interatomic forces are

expected to play a decisive role. Recent measurements on Ni(1O) by EELS,

and Ag(111) by inelastic He scattering 2 demonstrated that such information

can be extracted from the surface vibrational spectra. An analysis of the

EELS data recorded in the impact scattering regime has shown that the data

can only be accounted for by a 20% increase of the surface force constant

from the bulk value and a 3% contraction of the surface interlayer

spacing.4 On Ag(111) the presence of an anomalous peak in the measured

spectra was shown in an analysis based'on surface lattice dynamics to be a

signature of a 50% reduction in the radial surface force constant from the

bulk value.5  Their analysis attributed this peak to be a surface resonance

mode.5

The possibility to observe dipole active surface vibrational modes on

clean metal surfaces was recently demonstrated for the (100) surfaces of Cu
Q6

and Ni by EELS.6 In a recent letter we reported the observation of dipole

activ2 resonance modes on the (110) surfaces of Cu and Ni. 7  These modes

were shown from surface lattice dynamics calculations to be a new kind of

***(; S ~ '
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resonance arising from a pseudo band gap in the density of states for

longitudinal phonons propagating normal to the surface. This gap defines a

region where the bulk phonon density of states is strongly depleted and has

a simple structural explanation in terms of the coordination of the atoms

in the layers normal to the (110) direction of fcc crystals. No such gaps

and resonances exist on fcc (100) or (111) surfaces.

This paper shows in detail for a few different cases how a surface

vibrational resonance arises in situations with pseudo band gaps in the

bulk phonon density of states. The surface is observed to split off a mode

from the region of high density of bulk phonon states into the

pseudo band gap region where the strong depletion of the density of states

causes the mode to become a resonance. An argument is also given for

explaining why the divergent van Hove singularities which are present in

the bulk density of states disappear for a projection on the surface

* layers. These divergences disappear because an incident phonon at those

frequencies interfere destructively with the phonons scattered from the

surface. On the [110] surfaces of fcc Ni and Cu crystals the pseudo band

gap is shown to exist along the FR direction in the surface Bril'ouin zone

(SBZ). The corresponding surface vibrational resonance makes an avoided

crossing with a resonance derived from a gap mode at the R-point in the

SBZ. This kind of phenomenon has, to the best of our knowledge, not yet

been discussed in the literature. Previous lattice dynamical calculations

for these surfaces1 4 have shown that a surface vibrational resonance can

develop when the surface splits off a mode from one bulk subband which 0

becomes resonant with an overlapping second bulk subband. In contrast the

resonances discussed in this paper are seen to result from a single bulk

phonon band and possess a nonvanishing frequency at f, the center of the des

D.A .or
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SBZ.

An extreme case of a pseudo band gap is found in the dispersion of

longitudinal phonons in the [111) direction of body centered cubic

crystals. In this case there exists two rather narrow surface resonances

as illustrated for Fe(111). This analysis suggests in general that surface

vibrational resonances should be observable on a variety of surfaces at

points in the SBZ where a bulk phonon dispersion relation has a pseudo band

gap.

A detailed quantitative comparison of the measured spectra with the

calculated EEL spectra shows that the loss peak derived from the resonance

is reproduced with a value for the surface force constant within ± 15% from

its bulk value. This finding is rather remarkable in light of the large

oscillatory relaxations of the surface layers observed by low energy

electron diffraction (LEED) for these surfaces.8 The spectra also give

information about the dipole activity of the surface layers. The shape of

the loss spectrum is well reproduced by only the two outermost surface

layers giving the dominant contribution to the dipole activity. The dipole

strength is found to be of the same order of magnitude as measured for the

(100) surfaces.
6

The vibrational structure of the surface appear in the measured

NH spectra through a specific projection of the surface vibrational density of

states. While the relevant projection probed in inelastic He scattering is

essentially given by the displacements of the outermost surface atoms

normal to the surface, 9 the relative rigid displacements of the surface

layers is the relevant projection in inelastic dipole scattering. 6 Such

vibrational density of states have been evaluated here from surface lattice

dynamics for a semi-infinite substrate using simple force constant models.

a. , qU~a-*j~rj-a.- %
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The force constant models have been extracted from Born von Karman

analysis of inelastic neutron scattering data with particular emphasis on

the high frequency vibrations. The bulk phonon dispersions of Cu and Ni

are well described by a single nearest neighboring force constant. 1°,1

The dispersion of the longitudinal phonons in the [111] direction of Fe is

more complex and requires at least 3 parameters. 12 The surface interlayer

force constants have been chosen to have the same values as the bulk

layers. This choice should be viewed as a reference model with no more

justification than that it describes the large effect of the loss of

coordination of atoms at the surface.

The surface vibrational density of states has been calculated using a

Green function technique proposed by Lee and Joannopoulos. 13 This

technique is based on the transfer matrix and its application to surface

lattice dynamics is described in an appendix. Previous lattice dynamics

calculations treating (110) surfaces of fcc crystals have been based on

finite slabs, 14 where the surface resonance structure discussed here was

not identified. A reinvestigation of these surfaces using the finite slab

method15 shows that this method is capable of identifying these resonances

and is a convenient method for comparison to electron energy loss spectra

where an instrumental energy broadening factor is required. However, the

transfer matrix method for the semi-infinite crystal allows an exact deter-

mination of the spectral line shapes and is a more practical method for

identifying very narrow resonances in the surface phonon density of states.

This paper is organized as follows. In Section 2 the experimental

arrangement is described. A theoretical discussion is made in Section 3 to

explain the origin of the pseudo band gaps and surface resonances.

Detailed comparison with experiments is given in Section 4, followed by a

-;i 22.
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discussion on the dispersion of the resonances in Section 5. The extension

to bcc(111) surface is presented in Section 6. The paper is summarized in

Section 7. The application of the transfer matrix method for calculating

surface vibrational density of states is presented in the Appendix.

2. Experimental Details

The experiments were performed in a multitechnique ultrahigh vacuum

system which is evacuated by turbomolecular, ion, and titanium sublimation

pumps with a base pressure of 4xlO- 11 Torr. 16 The electron spectrometer is

based on a double pass 1270 cylindrical electrostatic deflector for the

monochromator and analyzer. The scattering geometry is fixed with a total

scattering angle of 1200. The angular acceptance of the analyzer is 1.8°

at full-width-half-maximum (FWHM). The scattering plane containing the

incident and scattered electrons is defined by the surface normal and the

[110) crystallographic direction. The spectra were recorded in the

specular direction at a temperature of 300 K. Impact energies of 3.2 and

4.3 eV were used for Cu and Ni respectively.

The samples, which were approximately 1 cm diam and 1 mm thick disks,

were cleaned by neon ion bombardment (500 eV) and annealing to 750 and 1050

K for Cu and Ni respectively. The samples were spotwelded to a manipulator

.v -with a pair of 0.5 mm Ta wires for the Ni sample and with 0.5 mm Pt wires

for the Cu sample. The clean surfaces displayed sharp lxi LEED patterns

without any sign of typical impurity vibrations, such as 0, C, or S, in the

electron energy loss spectra. Similar procedure was used in preparing the

Fe sample except that it was sputtered with I keV ions and annealed to 850

K. The most difficult contaminant to remove on the Fe surface was found to

be oxygen. The Fe crystal was also mounted by two 0.5 mm Ta wires.
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The vibrational spectra of the clean Cu and Ni(11O) surfaces are shown

in Fig. 1. The instrumental resolution is 4 meV FWHM. On both surfaces

sharp loss features are observed within the bulk phonon bands at 20 and 24

meV for Cu and Ni respectively. Off-specular measurements show these
,17

losses to be excited by the dipole scattering mechanism. Energy gain

peaks are also observed with an intensity ratio to the energy loss peaks

determined by the Bose-Einstein distribution factor at 300 K. An important

feature of these losses is that the ratio of their energies scales as the

ratio of the maximum bulk phonon frequency which is 29.7 and 36.7 meV for

Cu10 and Ni11 respectively. This fact suggests that these losses are

derived from longitudinal phonons propagating normal to the surface. A

surface lattice dynamics analysis presented below shows in fact that the

observed spectral features are due to a vibrational resonance, localized on

the outer surface layers, which results from a split off state in a pseudo

band gap in the density of states for longitudinal phonons propagating

along the [110] direction.

3. Pseudo band gaps and resonances: fcc(110) surfaces
The notion of a pseudo band gap is illustrated by the dispersion of

longitudinal bulk phonons in the [110] direction. A detailed analysis of

the displacement fields for phonons scattered from the surface shows how a

- surface vibrational resonance can develop in this situation and why the

divergent van Hove singularities present in the bulk phonon density of

states disappear on the surface projection. The development of a resonance

on the (110) surface is contrasted with the (100) and (111) surfaces where

no such resonances appear.

For the (110) surface of fcc metals only rigid motions of the layers

of atoms normal to the surface can be dipole active. Such a motion of the

4,X
uI4,
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bulk layers corresponds to longitudinal bulk phonons propagating in the

[110] direction. It is known since the early studies by inelastic neutron

scattering that the full bulk phonon dispersions for Cu and Ni can be well

V decribed by a Born-von Karman model of lattice dynamics based on central

nearest neighboring force constants.'0 ,"1 In this model the eigenvalue

problem for the longitudinal bulk phonons propagating in the [110]

direction is given by,

W2wL = a(4wL - WL+1 - WL I - WL+2 - WL_2), (1)

and is in the [100] and [111] directions given by

w2wL = 2a (2wL - WL+1 - WL_1), (2)

where wL is the displacement of an atom in the Lth layer in a direction

normal to the layer, w the frequency, a the central nearest neighboring

force constant, and M the mass of an atom.

From the translational symmetry of the bulk layers the solutions to

Eqs. (1) and (2) are simple plane waves wL = ei L with energies w(c)
satisfying the dispersion relation for the [110] direction,

( = _[sin2 (31) + sin2 (wc)1, (3)
2 2

and for the [100] and [111] directions,

W ()= 2 si 2j) (4)

where wo = 8a/M. The resulting phonon dispersion from this simple force

constant model for the lattice dynamics agrees fairly well with data from

inelastic neutron scattering for all the major crystallographic directions

as shown in Fig. 2 when wo is adjusted so that w(;=l) is equal to the

Smeasured value in the [110] direction, i.e. w( =i) = o// , w0 29.7 and

z V,
• . ", ? r , , .r , ,.. w., ,.wj , r ;r:.... ... ,: .:,. 2€:."2 II ": " . " •.. A " :,.
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36.7 meV for Cu and Ni, respectively. The fit is particularly good in the

high energy region and the largest discrepancies are typically found in,

for this analysis, the less interesting low energy region.

A characteristic feature of the dispersion in the [110] direction is

its non-monotonic behavior with a maximum at =;m, well within the

Brillouin zone. This behavior can be understood simply from the

coordination of atoms in this direction shown in Fig. 3. In this case an

atom has nearest neighbors not only in the nearest layer but also in the

next nearest layer. The next nearest neighboring atom lies in the [110]

direction and causes the next nearest interlayer force constant to be as

strong as the nearest interlayer force constant in Eq. (1). This causes

for instance the restoring force for the displacement fields at c = 0.5 to

be stronger than at 4 = 1.0. In the other two crystallographic directions

an atom has only nearest neighboring atoms in the nearest neighboring layer

and this causes the dispersion to be monotonic with ; as evidenced by Eqs.

(2) and (4).

In surface vibrational spectroscopy one probes the vibrational density

of states in the surface region. Before presenting results for the surface

density of states we will consider first the density of states for a bulk

layer. The phonon density of state g(w) for a bulk layer is simply

01 determined by

g(W)(
i d; ~~

where the sum is over all positive ¢i satisfying w( i). From the

phonon dispersion relations given by Eqs. (3) and (4) g(w) can be evaluated

straightforwardly and is presented for Ni in Fig. 4 (upper panel). In the

low energy limit w = csn/d and g(w) goes to a constant, g(w) = d/Csi,

L'. where cs is the longitudinal sound velocity and d the interlayer spacing.

ZS..
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' '.The stationary points in the dispersion relation defined by d = 0 give

rise to divergent van Hove singularities in g(w). 18  In one-dimensional

problems, as in the case considered here, the divergences are in most cases

power singularities with an exponent -1/2. This kind of singular behavior

is readily shown from the fact that it is possible to make a Taylor
expansion w( ) = WC + Y(C-c)2/2 around an isolated stationary point

= c and Eq. (5) gives directly that

g(W) 1 IWC"- / 2 , c" (6)

However, in some exceptional cases, which are not encountered here, y = 0

and the next leading term in the Taylor expansion gives rise to another

value for the exponent. For metals it is also possible to have

- non-analytic behavior, Kohn anomalies, from the long-range interactions

introduced by the sharp Fermi surface. These singularities are not

discernible for Cu and Ni. The most important point to be made here about

g(w) is the fact that the [110] dispersion relation has a relatively large

density of states in a rather narrow region in w, 22 <i, < 33 meV,

compared to the low energy region 0 < ihw < 22 meV. This latter region will

for that reason be called a pseudo band gap. No such region can be defined

for the other two directions [100] and [111].

In order to evaluate g(w) for a surface layer one needs a model for

4the effects of the surface on the force constants. An obvious effect of

forming a surface is the corresponding loss of coordination of the

surface atoms. Here we will only account for that effect on the interlayer

force constant. The resulting equations describing the surface layers in

V.'
5
,
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the li10] direction are given by,

w2wl -(2W w 2 - w3O
M

(7)

S 2= c.(3w2 - w1 - W3 - WO,
M

and for the outermost surface layers in the [100], [111] direction

w2w1 = 2ct(wl - w2). (8)

M

The presence of the surface breaks the translational symmetry and the

solutions to Eqs. (1) and (7) can no longer be written as a single plane

wave. Rather a wave e-i"{L incident on the surface will be reflected and

can couple to another wave e 1'rZ with the same energy w(c) = w(c). This

kind of argument suggests the following ansatz for the scattered wave in

the [110] direction,wL = e-i 7L + R(l)eii  L + R )e+i" rZL (9)

This form for the ansatz is justified in the Appendix. Due to the

non-monotonic behavior of the dispersion some care is needed to get the

right boundary conditions. The reduced wavevector C has to be choosen from

the ranges -1 < < -m and 0 < c < m where the maximum in the phonon

dispersion occurs at ± ;m. In these ranges the group velocity is

positive, dw/dc > 0, so that e-i,,L and eiffL are incoming and outgoing

+i YrL
waves, respectively. The other reflected wave e is propagating for

w/wo > I//r- and similarly has to be choosen from the ranges where the group

velocity is positive, dw/dZ>0. For smaller energies w/wo<//2, Z is

complex and ei L is an evanscent wave and the sign of Imc has to be

chosen so that it is a decaying wave.
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The two reflection coefficients R() and R(O) are now determined from

the two equations of motion for the surface layers, Eq. (7). The two

equations for R(c) and R(c) are given by,

di(c)R(c) + d ( = -di(-c) i = 1,2 (10)

where

d1(;) = 2(c01/4) + (eWC + e12w)

and

d2() = (v2 ( )-3/8) + 1 e
-i  + e iw + e12wC

8"

Here v is the reduced energy v = w/wo. The surface vibrational density of

states defined as,

g~)= f~d;IW,126(cI-w( )) (1%0

can now be evaluated from Eq. (9). It turns out, however, that it is more

elegant and practical to evaluate g(w) by the transfer matrix method

described in detail in the appendix. The resulting g(w) calculated by the

transfer matrix method for the [1101 direction is depicted in Fig. 4 (lower

panel).

A noteworthy feature of g(w) is that the divergent van Hove

singularities have disappeared in the projection on the outermost surface

layer. This can be shown rather easily from Eqs. (9) and (10) to be due to

the fact that one gets destructive interference between incident and

reflected waves resulting in WL-O at the stationary points. For instance

at = Cm the ansatz degenerates to,
| K . . . - "y~ m + iw mL

wL =(i + R(cm))e + R(m )e (12)
LM~ M mS



Instead of having two inhomogeneous equations for R(c) and R(c) from

Eq. (10) we have now two homogeneous equations for 1 + R(cm) and

R( m). These two equations will in general have a trivial solution

except in those accidental cases where the determinant is identically

zero. Thus the contribution to g(w) from • is gtw)=Iwi(dj 2Ildw/d~l.

From Eq. (10) it is evident that wl() is analytic around ;=cm, and

wl( ) - X(;-cm) since wl(%m) = 0. Similarly for w(;), w( ) = wm +

Y(C-M)2/2, and

g(W) =m - w)1/2, C + (13)

Thus the divergent van Hove singularity i(-wm)'/ 2 at a bulk layer

turns into a bounded van Hove singularity -(W- m)1/ 2 on a surface

layer. This argument indicates also that the divergent van Hove

singularity should not exist in g(w) for a projection on any layer for the

semi-infinite substrate. A closer analysis reveals, however, that the bulk

density of states are recovered in the limit L+-. For instance, for a

layer far inside, L 1, IwLI2 - 4sin 2 w(c- m)L] when ;+;m. Thus

g(w) will rise rapidly when going away from wm and have a large

maximum 8L/IYI at ;-cm = 1/2L, arbitrarily close to wm. This argument

for the disappearance of the divergent van Hove singularities in a

projection of g(w) on a surface layer can be shown to apply to more general

,1 situations. For instance, it is not necessary that surface force constants
, V

are the same as in the bulk region.

Most importantly, g(w) shows a sharp narrow feature around 23 meV as

/l seen in Fig. 4 (lower panel). This feature is now shown to be a surface

vibrational resonance. In a situation when there is an absolute band gap

it is well known that the surface can introduce a localized state split off
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from the band. In this case there is no absolute band gap rather a pseudo

band gap. The surface can possibly split off a state from the band which

turns into a resonance by overlapping with the low density of bulk states

in the pseudo band gap. This expectation is confirmed from an analysis of

the reflection coefficient for w/wo < 1/r, = 1 + iK where
1

coshK =- [1+/25-32(,/wo)2] and the complex part gives rise to an
,4

*evanescent wave (-1)L e
-KL. The corresponding reflection coefficient

R{F) is found to have a simple pole for complex v at

vpole = 0.663 + iO.047 (for Ni, Awtpole = (24.3 + il.73)meV.) The

existence of such a pole with an imaginary part wl relatively close to

the real axis justifies calling this rather sharp peak a surface

vibrational resonance. Note that the peak is quite asymmetrical due to

interference with bulk states in the depicted projection, a feature which

is typical for Fano-resonances.
19

For the [100) and [111] directions the ansatz for the solution to

pEqs. (2) and (8) has a more simple form

w = ei i r L + R(d)e- irL (14)
L

for 0<;<l. This ansatz inserted into Eq. (8) for the surface layer gives a

simple form for the reflection coefficient R( ) = eiw;. As a function of

v this reflection coefficient, R(v) = 1-2v 2+2i v2-v4 (when 0<;<I), has no

poles associated with any resonances. The phonon density of states g(W)

-4: projected on a surface layer can now be evaluated directly from Eq. (11)

and is given by,

g(,) = 4 /i - 2 (15)
if WO

This density of states shows accordingly no surface vibrational resonances
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as depicted in the lower panel of Fig. 4.

4. Comparison with experiment

An attractive feature of EELS is the possibility to analyze

quantitatively measured dipole active losses. 20  The dipole loss function

for longitudinal bulk phonons is calculated for Ni and compared with the

measured spectrum. The sensitivity of the calculated spectra to changes in

the surface force constant and the distribution of the dipole activity

among the surface layers are also investigated.

In a recent letter it was shown both experimentally and theoretically

that the displacements of the outer layers of metal atoms can give rise to

a long range dipole field due to incomplete screening by the conduction

4> electrons of the electric field from the displaced ion cores. 6  The
'V..

strength of the dipole field is described by effective charges e* which

relate the normal component of the dynamic dipole moment Uz to the rigid

displacements wL of layer L normal to the surface through,

e = ew. (16)
z LL

Here we use the same model for e as in Ref. 6,
• 'i* * e* e*L

el = -e2 = e and e = 0, L>2. (17)

Note that a rigid displacement of the metal atoms normal to the surface
cannot give rise to a dipole moment. i.e. eL = 0. The projection of the

phonon density of states relevant for dipole losses is accordingly given

41 by,

Sg(w) : Jdr.p~*w (-,) 26 ( -_W(: (18)
0)L LLL I

where n* = e/e t = ( e ' ) , is the nor.malized field of

L ot tti

-Z
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effective charges. The spectral function S(w) for the dipole-dipole

correlation function appearing in the energy loss function is related to

g(w) through,
2 1

S(w) = (1 + n(w))eo*2 A 1. g(w), (19)
tot 2Mw

where the mass M of a metal atom appears in the root-mean-square amplitude

A/2%w for phonons with energy fiw and n(w) is the Bose-Einstein distribution

factor.

From inelastic dipole scattering theory the inelastic current II(W) of

electrons collected in the detector around the specylar direction after

=2

II(W)/I = "Me f(Eo,c,)S(w), (20)
tot ( 2AEocos

.-. .where Itot is the total integrated intensity of the elastic peak in the

energy loss spectrum, m the electron mass, A the area of the surface

primitive cell, and Eo the kinetic energy of the electron incident with an

angle a from the surface normal. The function f(Eo,w,a) is given by,20

f(Eo,w,a) = (sin 2a - 2cos 2 )Y + (sin 2a + 2cos 2 a)lnX, (21)

where Y = e2/(82 + 80), X =(o + e2)/e0, eo =li'w/2Eo gives the angular

extension of the dipole lobe, and 01 the half-angle of the detector

aperture. The loss function depicted in Fig. 5 is now obtained from Eq.

(20) by calculating the projected phonon density of states defined in Eq.

(18) by the transfer matrix method for the distribution of effective

charges given in Eq. (17). The parameters a, al, and Eo are determined

from the experimental conditions described in Section 2, and the

experimental resolution was introduced by a 4 meV Gaussian broadening of

g(,). The total effective charge e*ot had to be chosen to be 0.034e and

4to
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0.039e for Cu and Ni, respectively, in order to reproduce the measured loss

intensities at 300 K. These values are of the same order of magnitude as

for the value determined previously for the Cu(100) surface.6  Because the

resonance gives rise to a rather sharp loss peak there has been no

particular need to have a detailed analysis of the contribution from the

electron-hole pair excitations to subtract the background.22

The calculated position of 24.5 meV and the peak width of 6 meV for

the surface vibrational resonance shown in Fig. 5 are in good agreement

with the measured values for Ni. Note that the value for this peak

position is about 1 meV higher than for the peak position deduced from g(W)

for the projection on the outermost layer. This difference is due to the

fact that the low energy bulk phonons contribute much less to this dipole

active projection, which suppresses the asymmetry of the peak. The peak

position is thus closer to the value for the real part of the pole in the

complex w-plane as given in the previous section. For Cu, g(w) is obtained

in the advocated force constant model simply by scaling the phonon energies
I,

with wo(Cu)/wO(Ni) " 0.81. This gives an energy of 19.8 meV, in good

agreement with the measured value of 20 meV observed in Fig. 1.

There are no reasons to expect that the only effect of the surface is

the loss of coordination of atoms in the surface region as described by

Eq. (7). For instance, both model calculations for the total energy23 and

low energy electron diffraction (LEED)8 measurements have shown that the

atoms relax oscillatorily in the surface region for many metals. In these

new equilibrium positions for the atoms the force constants can be

different from the bulk values. Off-specular measurements of the Rayleigh

surface phonon dispersion on Ni(O0) by EELS have suggested that the

interlayer force constant between the first and second layer is about 20%

..-

.5N
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larger than the bulk value.,' On Ag(111) the observation by inelastic

He scattering of a surface vibrational resonance away from the F-point in

the SBZ could be accounted for by a reduction of about 50% of the radial

part of the force constant between atoms in the surface region.
2 ,5

The position of the surface vibrational resonance observed in the

energy loss spectrum in Fig. 1 should also contain information about

surface force constants. The sensitivity of the position of the resonance

to changes in the surface interlayer force constants has been investigated

by calculating a dipole active projection of the phonon density of states

g(w) for different values of the surface interlayer force constants for

Ni. There are several conceivable ways to modify surface force constants

and we have chosen to modify the surface force constant between atoms in

the outermost layer and their nearest neighboring atoms in the second and

third layer. The modification is described by the following equations of

motion for the surface layers,

= S(2wl - w2 - w3)
M

W 2w2 = LS(w2 - w) + I (2w2 - w3 - w4 ) (22)
M

W 2w 3 = 2s (w3 - w) + . f3w3 - w2 - w4 - w5 ).
MM

The resulting phonon density of states is shown in Fig. 6 (upper panel) for

three different values of as/a. A 25% increase and decrease of as

relative to a shifts the peak upwards by 1.8 meV and downwards by 2.7 meV,

respectively. The experimental resolution is such that it can determine

-/. the peak position within 1 meV and could accordingly detect changes of as

within about -15 relative to :&. There are also notable changes in the
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,width of the resonance when as is changed. It narrows and widens with

about a factor of 2 when as is increased and decreased by 25% relative to

a, respectively. The width of the calculated loss peak is close to the

measured width which also supports the range of surface interlayer force

constant as suggested by the peak position.

Another consideration to be taken into account is how the effective

charges are distributed among the surface layers. In the case of the

Cu(100) surface the results from a jellium model calculation for Cu

suggested the distribution defined in Eq. (17).6 The application of the

same model for the Cu(110) surface gives, however, that even the third and

fourth layers have an appreciable effective charge e* mainly due to a

smaller interlayer distance in this direction. In Fig. 6 we present

results for g(w) calculated for Ni with two different distributions for

n = eL/e* extending to the third and fourth layers and compare with

the result from the distribution defined in Eq. (17). For the other two

distributions the resonance peak is still prominent but the strength of the

states in the upper bulk band region has been appreciably enhanced. The

measured loss spectra for Cu and Ni shown in Fig. 1 do not indicate such a

strong contribution from the bulk states.

Thus our analysis of the loss spectra suggests that there are no

dramatic changes in the surface interlayer force constants from the bulk

values. Further the data favor the model that the effective charges are

dominant for the two outermost surface layers.

5. Dispersion of the resonance along the F- direction

The dispersion of surface vibrational modes along different directions

in the SBZ has been shown to be feasible to measure for a few metal

.*.

- .**-%~ .. , .- *%* . V.. " . % ". '. " '
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surfaces by inelastic He scattering2 ,3 and off-specular EELS.' Therefore

it is of interest to know how the resonance disperses away from the

f-point. It is found that the resonance exists and is derived from a

pseudo band gap even out to the 5-point. The resonance makes an avoided

crossing with another resonance derived from a surface phonon in a bulk

band gap. Close to the R-point the resonance leaves the bulk subbands and

appears as a surface phonon.

Along the -R direction the displacements of the atoms partition into

two classes due to the reflection plane symmetry. The odd modes are

polarized in the y-direction and are symmetry forbidden to couple with

displacements of atoms polarized in the x-z phane which form the even

class. In the nearest neighboring central force constant model the motion

of atoms in the y-direction gives rise to a monotonic dispersion of the

corresponding phonons with no pseudo band gaps. Henceforth the y-motion

will not be considered further. The equations of motion for displacements

of atoms in the x-direction and in the z-direction are coupled along the

? - direction and are for the bulk layers given by, 2

w 2UL = M1[(4-2cos(i))uL - cos(ir&/2)(uL_ 1 + UL 1)

+ isin(lr/2)(wL+1 - WL -l)], (23)

2 2WL = M[4wL - cos(n/2)(wL+1 + WL-1) - (wL+2 + wL-2)

* &. + isin(n&/2)(uL+I - ,

where u eikxRx and w e ikxRx are displacements in the x- and z-directions,
L L

respectively, of an atom at position R in Layer L, and & = kxa//2r is the

reduced wavevector along the -X direction. At the T-point (&=Q) the

equations of motion for uL and wL are decoupled and Eq. (1) is
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recovered for wL.

The solutions to Eq. (23) are plane waves uL = u( ,de
iw L and

wL = w(,d)eiw
;L which would result in two branches of the dispersion

relation, one lower wL = wL(E,) and one upper wu = wu(E,c). The

behavior of these two branches at =0.6 is illustrated in Fig. 7. If one

artifically removes the coupling between uL and wL then the dispersion

for phonons polarized in the x-direction is monotonic and crosses twice the

dispersion for phonons polarized in the z-direction. The latter dispersion

is non-monotonic due to the strong coupling to the second nearest layer.

The coupling present in Eq. (23) between uL and wL causes these two

branches to make two avoided crossings with corresponding interchange of

character and makes them both non-monotonic with .

The influence of the surface on the force constants is modelled in the

same way as in Section 3 by taking into account only the loss of

coordination of atoms in the surface region. In this complex case we will

not attempt to write out the form of the scattered wave for an incident

wave. It is much more tractable to generate results for the surface

vibrational density of states by using the transfer matrix method. This

method cannot be applied directly to this system, however, due to the fact

that the dynamical submatrix D01 between the principal layers is singular

(see Appendix). This matrix D01 can be regularized, however, by

introducing a small second layer coupling a r(uL+2 + uL-2) into the
M

equations of motion for uL in Eq. (23). The value of r=O.01 is found to

be sufficiently small for an accurate calculation of the phonon density of

states. This value for r is much smaller than the errors in the nearest

neighboring force constant model used to describe Cu and Ni.

The results in Fig. 7 for the phonon density of states g(w,&) at &=0.6
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projected on the x-motion and the z-motion of the outermost layer show

several prominent features. There is a localized state in the gap at 11.1

meV, the surface phonon S1 in the notation of Ref. 14, being split off from

the bulk subbands by the reduction of the restoring forces in the surface

region. The x-projection of g(w,E) shows a narrow peak at 24 meV just

*' below the minimum energy of the upper branch which can be interpreted as a

state being split off from the upper branch and turning into a resonance

due to overlap with states in the lower branch. Thus the origin of this

resonance is the same as for the resonance discussed in the work on Ag(111)

where an "anomalous" peak was observed in inelastic He scattering.2  There

is, however, another narrow peak in the z-projection of g(w,E) around 19

meV. The non-monotonic behavior of the lower branch suggests the

interpretation that this peak is a resonance derived from the corresponding

pseudo band gap of the lower branch below wL(E,C=I). The upper branch

shows similar non-monotonic behavior with a pseudo band gap in between

-u,min and wu(E,i=1) which results in a resonance at 31.1 meV, very

close to wu(E,;=1). However, its dominant amplitudes are on layers

further inside the surface.

By calculating the x- and z-projections of g(w,E) on the outermost

layer for several values of E between 0 and 1 the behavior of the surface

vibrational modes can be followed along the f-R direction as shown in

Fig. 8. At the R-point we have three surface phonons for displacements

polarized in the x-z plane (i) S, the Rayleigh .urface phonon (ii) So which

exists only close to X and (iii) S7 a gap mode. The labelling of the modes

are taken from the work by Allen, Alldredge and DeWette'1 except for So

which was not identified in their slab calculations. The mode So is

localized on the second and third layer and is predominantly polarized in
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the z-direction. This mode turns into a resonance MSo inside the lower

bulk subband and lies in the pseudo band gap just below wL(E,C=1)• At

around t=0.5 - 0.6 the resonance interacts with the MS7 resonance and makes

an avoided crossing with a corresponding interchange of character. The

resonance MS7 is a continuation of the gap mode S7 into the bulk subbands

and becomes mainly polarized in the x-direction for 0.6 < _< 1.0. When

approaches the i-point (&=0) MS7 goes over into the resonance discussed in

previous sections and is mainly polarized in the z- direction. From the

T-point to the avoided crossing the width of MS7 remains roughly the same

(about 3.5 meV) and after it interchanges character it sharpens appreciable

to a width less than 0.5 meV. MS0 broadens and gets more localized on the

outermost layer away from the f-point and just at the crossing the width is

about 2 meV. After the crossing the width remains about the same and

sharpens up only just before leaving the bulk subband. Thus at the

crossing the widths of the resonances overlap, which makes the avoided

crossing less well defined.

-, 6. An extreme case: The bcc(111) surface

Non-monotonic phonon dispersion relations are not only found in the

[110] direction of fcc metals but exists also in the [111] direction of

24.
bcc metals. In general the phonon dispersion relations in cubic crystals

.:. . can be written in terms of a Fourier series in the interlayer force

constants due to factorization of the dynamical matrix. The higher Fourier

components result from additional interlayer coupling which leads to

non-monotonic dispersion relations. In the particular case of Fe(111) the

longitudinal phonon dispersion relation shows an additional extreme as a

* -:~-result of more extensive multiple interlayer couplings. This leads to a

V.
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pseudo band gap that is more pronounced than on the fcc(110) surface. The

multiple extremes are found to give rise to two sharp surface vibrational

resonances.

In the [111] direction of a monoatomic bcc crystal an atom has nearest

neighboring atoms not only in the nearest layer but also in the third

nearest layer (Fig. 9). While second nearest neighboring atoms only appear

in the second nearest layer. It is well known from studies by inelastic

neutron scattering that it is not sufficient to consider only nearest

neighboring force constant models as expected from the fact that the

distances a and /-a/2 to the nearest and second nearest neighboring atoms,

respectively, are rather close (a is the lattice constant). 2

The analysis of the experimental data in terms of a general tensor

force constant model shows dominant interactions to reach second nearest

neighboring atoms. Thus by retaining only up to second nearest neighboring

force constants the eigenvalue problem for longitudinal phonons in the

[111] direction is given by,

MW2 wL = (8a1 + 2a2 + 482)wL

.'*. - (3a, - 2B,)(wL+1 + wL-1)

- (a 2 + 262)(wL+2 + wL-2) (24)

- (a, + 2B,)(WL+3 + wL_3),

where wL is the rigid displacement of a bulk layer L in the [ill]

direction, and a,, 31 and a2 , 32 are the first and second nearest

neighboring force constants. The values for these force constants are

taken directly from experimental data,' 2 a1 /m = 78.89 (rneV) 2 ,

3,/m = 68.38 (meV)2 and a2/m 
= 70.15 (meV)2 and S2 is about 30 times

smaller and is neglected here. The deviations of this tensor force field

-......................-.
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from a central force field where a, = B and 82 = 0 are rather small.

Using this force constant model the dispersion of the longitudinal phonons,

wL = eiw4L, agrees well with the experimental data, as seen in Fig.

10. The most apparent discrepancy is around 7% between the model and the

data and is found at the second extreme. The existence of two extremes

within the zone boundary is due to the strong coupling to the third layer

introduced by the presence of a nearest neighboring atom in that layer in

the [111] direction.

As expected from the non-monotonic dispersion relation in Fig. 10, the

phonon density of states projected on a bulk layer has a pseudo band gap in

the region 0 < iw s 23 meV, as shown in Fig. 11 (upper panel). This gap is

even more pronounced than in the [110] direction of Cu and Ni due to the

higher longitudinal sound velocity for the Fe[111] direction. There are

now three divergent van Hove singularities from the stationary points in

the bulk phonon dispersion. For energies between 23 < iw < 35 meV there

exists three propagating solutions for bulk phonons as can be seen from

Fig. 10. In analogy with the fcc(110) surface, two of these solutions will

exhibit complex wavevectors for phonon energies within the pseudo band

gap. These complex solutions give rise to evanescent phonons localized at

-1 the surface which form vibrational resonances. This is illustrated in the

surface density of states in Fig. 11 (lower panel).

In calculating the surface phonon density of states the effects of the

A loss of coordination of atoms on the force constants in the surface region

are obtained as before by a simple truncation of the interlayer forces.

The phonon density of states g(w) projected on the outermost surface layer

shows no divergent van Hove singularities as expected from the discussion

in Section 3. Two sharp resonances are found in the pseudo band gap at
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19.7 and 21.3 meV (Fig. 11, lower panel). The lower lying resonance is

found to be mainly localized on the first and second layer with a width of

about 0.9 meV. This can be compared to the Ni(110) surface where the width

of the resonance is about 3.5 meV. The higher lying resonance is found to

be localized on the second and third layers. Recent electron energy loss

measurements on the Fe(111) surface are found to be in excellent

agreement with these results based on surface lattice dynamics. The

observed energy loss spectrum with a resonant structure at 21 meV and its

comparison to the dipole projected density of states are shown in Fig. 12.

7. Summary

A new kind of surface vibrational resonance is shown from surface

lattice dynamics to exist on surfaces having a pseudo band gap in the bulk

phonon density of states. The surface splits off a mode from a region of

high density of states into a pseudo band gap region where the density of

states is largely depleted. This behavior is illustrated for phonons

having a surface component of the wavevector along the F9 direction in the

SBZ of the (110) surfaces of Cu and Ni, and for longitudinal phonons
'.-

.. propagating normal to the (111) surface of Fe. In these cases, the pseudo

band gap is a geometric structure effect caused by the particular

coordination of the atoms, which leads to higher Fourier components in the

bulk phonon dispersion relations.

At the f-point the resonance is dipole active and has been observed by

EELS on the (110) surface of Cu and Ni. From these observations it has

been possible to obtain information on the surface interlayer force

constants. In particular, the positions of the loss peak on Cu and Ni can

be reproduced with the same values for the interlayer force constants

at the surface as in the bulk. Along the rR direction in the SBZ the

; ,,...
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resonance makes an avoided crossing with a resonance derived from the

ST(X) surface phonon. This novel behavior should be possible to observe by

inelastic electron or He scattering at large parallel wavevector transfers.

Finally, this analysis suggests in general that this type of surface

vibrational resonance should be observable not only by inelastic electron

dipole scattering but by other surface spectroscopies, such as inelastic

He scattering, on a variety of surfaces at points in the SBZ where a bulk

phonon dispersion is non-monotonic and consequently has a pseudo band gap.

The origin of these effects is directly related to the geometric structure

of the surface.
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APPENDIX

In this Appendix it is shown how the transfer matrix method proposed

by Lee and Joannopoulos 13 can be applied to the calculation of surface

vibrational density of states. The method is illustrated for the surface

lattice dynamics problem of longitudinal phonons propagating normal to a

fcc(110) surface. Furthermore, this method justifies the choice of the

ansatz for the scattered waves in Eqs. (9) and (14).

The first step in this method is to form principal layers, here

labelled by an integer n, n=1,2,..., from the layers of atoms parallel to

the surface such that the dynamical matrix only introduces interactions

between displacement fields in nearest neighboring principal layers. In

the present case two layers form a principal layer. The column vector Wn

denotes displacement fields in the principal layer n,

W n(i) = W2n+i_2, i = 1,2. (Al).

In terms of these column vectors Wn the elgenvalue problem for the bulk

layers can be written as,

(z - Doo)Wn - DoIWn+I - D01Nn -1 = 0, n = 1, 2, ... (A2)

and the corresponding equation for the surface layers is given by,

(z - D5oo)W1 - D01W2 = 0. (A3)

Here z = w2 and D00 , D0 1 and Ds0 are (2x2) dynamical submatrices formed

-~,from the full dynamical matrix D(L,L') which can be obtained directly from

Eqs. (1) and (7). 0 o(i,j) = 0(2L+i-2,2L+j-2), 0o1 (i,i) = D(2L+i-2,2L+j),

L denotes a bulk layer, and 0 Soo (i,j) = D(i,j). For instance, D01 is given

by,
. *i".S

Y.D.. = (A4)
01

.,"O.M4
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Equation (A2) shows explicitly that there are only interactions

between displacement fields in nearest neighboring principal layers. Since

exists can be directly expressed in terms of the two preceding~~DO 1 -Wn+

column vectors Wn and Wn I by a simple rearrangement of Eq. (A2) as,

Wn+i = Do1-1(z - Doo)Wn - DOi 'Do+Wn 1I
, n = 2,3, . . . (A5)

This equation shows that it is possible to construct a matrix T(z) which

relates the displacement fields in two principal layers n+2 and n+1 to the

corresponding fields in the two preceding principal layers n and n-i,
W-n - Tlz) , (A6)* Wn+l Wn_1 ,

The matrix T(z) is the transfer matrix and is given by the product of the

following two matrices,TW =o-(- 0 -ol-1D0 o O+)to" o' (o11z-0) -o,-'oo,+)o (A7
T 0z1 0 (7

By iterating Eq. (A6), a displacement field in any principal layer can be

determined from their values on the surface layers as,

-Wn+2 Tn(Z) . (A8)

Wn+i WI

Equation (A3) for W2 and W, gives only 2 equations for 4 displacement

-4 fields and are not sufficient to determine W2 and W1. Further restrictions

are found by introducing the appropriate boundary conditions. That can be

- done by anaylzing the eigenvalues and eigenvectors of the dynamical

matrix.

For the bulk layers the solution to Eq. (A2) is given by translational

* symmetry as plane waves,

.ti z, " .". . "
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i2niri

W n= e (A9), . ei(2n.1)w;

where the reduced wavevector satisfies the bulk dispersion relation

W 2 = Wo 2( sin 2( /2)+sin2( n))/2 as given by Eq. (3) in Section 3. In terms

of the variable X=eiw; this dispersion relation is equivalent to a

polynomial of degree 4 in X and has accordingly 4 roots Xk, k=l,2,3,4.

The eigenvectors Vk(z) of T(z) can now be directly formed from these

plane wave solutions,

Xk
3

Vk(Z) (AlO)

Xk

and the associated eigenvalue for Vk(z) is given by Xk4 and

T(z)Vk = Xk 4Vk . The eigenvalues are distinct away from the critical

points, dw/dc = 0, and the corresponding eigenvectors span the

4-dimensional space of displacement fields of two adjacent principal

layers. Thus W2 and W, can then be simultaneously expanded in terms of

Vk,
1W21 4
WI c kVk* (All)
\Wi k=l

This equation and Eq. (A8) give directly that the displacement field for

any principal layer can be expressed as,

"II 2n 2 4n

I'.'
'"* k X k ' n ."A 12)

W&~ *;~:l
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or in terms of the displacement field wL for a layer L,

w Cke k L ,  (A13)WL -- k

where ck = cke . This form of solution in Eq. (A13) justifies the

ansatz made in Eqs. (9) and (14) in Section 3. The solution corresponding

to scattered wave can be found by imposing the outgoing boundary conditions

as discussed in Section 3. This restricts the solutions to depend on two

parameters. These two parameters can then be determined from the two

equations for the surface layers.

A more convenient way to evaluate the vibrational density of states

g(w,{nL)) than using the scattered wave solutions appearing in Eq. (A13)

is to determine first the resolvent matrix (a Green function) U(L,L';z)

associated with the dynamical matrix D(L,L'). This resolvent is defined

by,

,,[z6(L,L") - D(L,L")]U(L",L';z) = 6(L,L'), (AI41

and the vibrational density of states is given by,

g(w,{nL} = Im I n U(L,L';(w+iO+)'2)n (A15)'

L LOL' L L5

The transfer matrix approach can now be applied by considering the

resolvent (2x2) submatrices Un,n,(z) with respect to the principal layers

and they are defined as,
Un,n (i,j;z) = U(2n-L+i,2n'+L-j;z), i,j=1,2. (A16)

- To obtain the vibrational density of states for the surface layers it is

sufficient to evaluate U1,1(z). The resolvent matrix element U 1(z)

satisfies the same equations as W , Eq. (A2), except at the surface layers

where the equations have an inhomogenous term,

. %
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(z -Dsoo)Ull(Z) - D01U2 ,1(z) = 1 (A7)

Similar to the construction of Wn , Un,1(z) can be constructed from

Ul,1(z) and U2 ,1(z) by iterating the transfer matrix,

(U2n+2,1(z) Tn(z) \Ul,(Z) (A18)

U 2n+11z 1 l Z

Some care is needed to get the correct physical Riemann sheet of the

resolvent as a function of z. On this sheet Un,l(z) has to be decaying

with n when imparting a small positive imaginary part ic to w, z = (w +

ie) 2. Such a decay is evidently achieved by expanding the two column

vectors of U2,1(z) and Ul,l(z) simultaneously in terms of those

eigenvectors with lAki < 1. This point and the fact that for complex z

the eigenvectors are divided evenly into two classes <1 andIXkI<
I kI > 1, respectively, were shown in detail for the general case in the

original work by Lee and Joannopoulos. 13 Let k=1,2 label the two

eigenvectors with ~ki< 1 and introduce the two associated (2x2)

matrices,

SWu(ij) - vii)
(A19)

WL lij) = V(l1+2).

The expansion of the two submatrices of the resolvent in these two

eigenvectors now becomes,

( 2,1(z)( W UA

U1,1(z)
= WLA (A20)

where the coefficients in the expansion forms a (2x2) matrix A. These two

resolvents are now specified by 4 parameters. The 4 surface layer

equations in Eq. (A17) for U1,1(z) and U2 ,1(z) will now completely

determine these parameters. This can be done by first eliminating the

'"

• . ~ ?
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matrix A from Eq. (A20).

U2,1(z) = WUWL U (z). (A21)

Furthermore, by inserting this expression for U2, 1(z) into Eq. (A17) a

simple linear matrix equation is obtained for U1,1(z) which can be solved

by a matrix inversion,

Ul1 (z) = (z - DSoo - Do1WuWLC -  . (A22)

Thus for every frequency w the vibrational density of states can be

evaluated from Eqs. (A15) and (A22) by diagonalization of a (4x4) complex

matrix and by inversion of two (2x2) matrices. Ul,1(z) will have simple

poles at those frequencies corresponding to localized vibrational modes at

the surface. Similiarly, the resonances appear as poles in the complex

frequency plane but not on the physical Riemann sheet of U1,1(z)

However, the other Riemann sheets of U1,1(z) should be possible to

construct from other choices for the eigenvectors in Eq. (A19).

.4..
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Figure Captions

Fig. 1: Electron energy loss spectra of the clean (110) surfaces of Cu and

4/. Ni. The sp.ctra were recorded in the specular direction at 300

K. The sharp peaks observed at 20 and 24 meV, for Cu and Ni

respectively, correspond to surface vibrational resonances.

Fig. 2: Longitudinal bulk phonon dispersion relations in the [110], [111]

and [100] directions of Cu and Ni. The data from inelastic

neutron scattering are compared with results from a nearest

neighbor central force constant model. The interlayer distance is

d.

Fig. 3: Structure of fcc crystals in the [110] and [100] directions. (a)

Top view of atoms of the (110) surface together with the

crystallographic directions. The (110) surface Brillouin zone is

depicted in (b). The coordination of atoms in the bulk layers

normal to the surface are shown for (c) the [110] and (d) the

[100] directions.
a,,

Fig. 4: The density of states g(w) for longitudinal phonons projected on

bulk and surface layers for Ni. The results for g(w) in the

[110], [111] and [100] crystal directions have been calculated

using the same force constant model as in Fig. 2.

Fig. 5: Calculated electron energy loss function Il(w)/Io for Ni(110) at

-.,' 300 K. I0 is the maximum intensity of the elastic peak in the

energy loss spectrum. Only the two outermost surface layers are

assumed to be dipole active and the total effective charge e*tot

' '.has been adjusted to 0.039e (e is the free electron charge) in

order to reproduce the measured loss in Fig. 1. The instrumental

resolution has been introduced by a Gaussian broadening of 4 meV.

-.a,'.. "- -'- .' ' . .. " .'-W ' .''' '''",. ;; ; ' - .""- ."' .- .").)--'' -)".i", ') ) .i " "
-
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Fig. 6: Sensitivity of g(w) to different models for the surface force

constants and the effective charge fields. Upper panel shows the

1results for different values of the surface interlayer force

constant as relative to the bulk interlayer force constant a.

The relative motion of the two outermost layers has been used in

obtaining the dipole active projection for g(w). Lower panel

shows the results for different choices of the effective charges

*,u (e*, e*, e*, e*) of the four outermost surface layers, e* = 1tot

when as = a.

Fig. 7: Dispersion of bulk phonons in the [110] direction of Ni and the

corresponding surface phonon density of states g(w) at

: kxa/2 = 0.6. The left panel shows the two branches, an

iupper gU" and a lower "L" branch, of the dispersion in the [110]

direction (solid lines) arising from an avoided crossing between

phonons polarized in the x- and z- directions, respectively. The

dashed lines show the dispersion when the interaction between

these two polarizations is turned off. The right panel shows the

phonon density of states g(w) projected on the z-motion (solid

line) and the x-motion (dashed line) of the outermost surface

layer.

Fig. 8: Dispersion of the resonance along the u-direction. The

dispersion of the resonance arising from the pseudo band gap
.q

(squares) makes an avoided crossing with the dispersion of the

%resondnce (circles) derived from the S7 (f) surface phonon. The
solid lines give the maximum fiwL,max , fu,max and minimum

' 1wumin energies of the lower and the upper

boundaries of bulk subbands, respectively. The dashed lines show

.-.-



-38-

. •hWL(E,==1) and-iwu(&,c=1) for phonons with a reduced

wavevector E = kza/r2w where a is the lattice constant. The

notation of the surface resonances S, and S7 are taken from Ref.

--- 14.

Fig. 9: Structure of a bcc(111) surface. The two different views of the

atoms (solid circles) are defined by the indicated

crystallographic directions. The atoms in (a) are enumerated

according to which layer they belong with number one

corresponding to the surface layer. The solid bars in the side

view (b) connects nearest and next nearest neighboring atoms.

The dashed circles represent atoms in an adjacent layer of atoms.

Fig. 10: Longitudinal bulk phonon dispersion in tihe [111] direction of

.12

7..' Fe. The data from inelastic neutron scattering'2 (squares) are

compared with the result from a tensor force constant model

extending to second nearest neighboring atoms. The lattice

constant is a.

Fig. 11: The projected density of states g(w) for longitudinal phonons on

a bulk layer (upper panel) and the outermost surface layer (lower

panel) of Fe(111).

Fig. 12: Electron energy loss spectrum of the Fe(111) surface. The

spectrum was recorded in the specular direction at 300 K. The

.' sharp peak observed at 21 meV corresponds to a surface

vibrational resonance. The small, broad structure at - 60 meV
U-.

is due to < 1 contamination of oxygen. The inset shows the

dipole projected density of states calculated for a projection on

the relative motion of the outer two surface layers and

convoluted with a 4.5 meV Gaussian b,-oadening due to instrumental

resolution.
-o°p
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